Cline - 中文版 Docs
  • Cline Documentation
  • 入门指南
    • 快速开始
    • What is Cline?
  • Basics
    • Cline - 中文版胜算 说明文档
      • Cline 和模型上下文协议 (MCP) 服务器:提升 AI 能力
      • Interactive blocks
        • OpenAPI
      • Integrations
        • Cloud Provider Integration
        • Security Concerns
      • .clineignore 功能支持
  • Cline - 中文版胜算 说明文档
    • 什么是Cline - 胜算云增强版
    • 对于新程序员
    • 安装 Cline-胜算云增强版
    • 安装 Dev Essentials
    • 我们最喜欢的技术栈
    • 上下文管理
    • 型号选择指南
  • Getting Started
    • What is Cline?
    • For New Coders
    • Installing Cline
    • Installing Dev Essentials
    • Our Favorite Tech Stack
    • Context Management
    • Model Selection Guide
  • 提高提示技巧
    • 提示工程指南
    • Cline-胜算云增强版 内存库
  • Improving Your Prompting Skills
    • Prompt Engineering Guide
    • Cline Memory Bank
  • 探索 Cline 的工具
    • Cline-胜算云增强版 工具指南
  • 检查站
  • 计划与行动模式:有效人工智能发展指南
  • 新建任务工具
  • Remote Browser 支持
  • Exploring Cline's Tools
    • Cline Tools Guide
    • Checkpoints
    • Plan & Act Modes: A Guide to Effective AI Development
    • New Task Tool
  • Remote Browser Support
  • 企业解决方案
    • 安全问题
  • 云提供商集成
  • MCP 服务器
  • 自定义说明
  • Security Concerns
    • Security Concerns
  • Cloud Provider Integration
  • MCP Servers
  • Custom Instructions
  • MCP服务器
    • MCP概述
    • MCP市场
  • 从 GitHub 添加 MCP 服务器
  • 配置 MCP 服务器
  • 连接到远程服务器
  • MCP 传输机制
  • MCP 服务器开发协议
  • MCP Servers
    • MCP Overview
  • MCP Marketplace
  • Adding MCP Servers from GitHub
  • Configuring MCP Servers
  • Connecting to a Remote Server
  • MCP Transport Mechanisms
  • MCP Server Development Protocol
  • 自定义模型配置
    • 带有凭证身份验证的 AWS Bedrock
    • 带配置文件身份验证的 AWS Bedrock
    • GCP Vertex AI
  • LiteLLM 和 Cline-胜算云增强版(使用 Codestral)
  • Custom Model Configs
    • AWS Bedrock w/ Credentials Authentication
  • AWS Bedrock w/ Profile Authentication
  • GCP Vertex AI
  • LiteLLM & Cline (using Codestral)
  • 本地运行模型
    • 请先阅读
    • Ollama
    • LM 工作室
  • Ollama
  • LM Studio
  • Running Models Locally
  • More Info
    • Telemetry
    • 遥测
Powered by GitBook
On this page

Cloud Provider Integration

PreviousSecurity ConcernsNextMCP Servers

Last updated 2 months ago

Cline supports major cloud providers like AWS Bedrock and Google's Cloud Vertex; whichever your team currently uses is appropriate, and there's no need to change providers to utilize Cline's features. For the purpose of this document, we assume your organization will use cloud-based frontier models. Cloud inference providers offer cutting-edge capabilities and the flexibility to select models which best suit your needs.

Certain scenarios may warrant using local models, including handling highly sensitive data, applications requiring consistent low-latency responses, or compliance with strict data sovereignty requirements. If your team needs to utilize local models, see with Cline.


AWS Bedrock Setup Guides

(For administrators)

VPC Endpoint Setup

To protect your team's data, Cline supports VPC (Virtual Private Cloud) endpoints, which create private connections between your data and AWS Bedrock. AWS VPCs enhance security by eliminating the need for public IP addresses, network gateways, or complex firewall rules—essentially creating a private highway for data that bypasses the public internet entirely. By keeping traffic within AWS’s private network, teams also benefit from lower latency and more predictable performance when accessing services like AWS Bedrock or custom APIs. For those working with confidential information or operating in highly regulated industries like healthcare or finance, VPCs offers the perfect balance between the accessibility of cloud services and the security of private infrastructure.


  1. Consult the to creating VPC endpoints. This document specifies pre-requisites and describes the syntax used for creating VPC endpoints.

  2. Follow the directions for in the AWS console. The image below pertains to steps 4 and 5 of the AWS guide linked above.

  3. Note the IP address of your VPC endpoint, open Cline's settings menu, and select AWS Bedrockfrom the API Provider dropdown.

  4. Click the Use Custom VPC endpointcheckbox and enter the IP address of your VPC endpoint

Running Local Models
IAM Security Best Practices
AWS Bedrock setup for Legacy IAM (AWS Credentials)
AWS Bedrock setup for SSO token (AWS Profile)
AWS guide
creating a VPC endpoint