Cline - 中文版 Docs
  • Cline Documentation
  • 入门指南
    • 快速开始
    • What is Cline?
  • Basics
    • Cline - 中文版胜算 说明文档
      • Cline 和模型上下文协议 (MCP) 服务器:提升 AI 能力
      • Interactive blocks
        • OpenAPI
      • Integrations
        • Cloud Provider Integration
        • Security Concerns
      • .clineignore 功能支持
  • Cline - 中文版胜算 说明文档
    • 什么是Cline - 胜算云增强版
    • 对于新程序员
    • 安装 Cline-胜算云增强版
    • 安装 Dev Essentials
    • 我们最喜欢的技术栈
    • 上下文管理
    • 型号选择指南
  • Getting Started
    • What is Cline?
    • For New Coders
    • Installing Cline
    • Installing Dev Essentials
    • Our Favorite Tech Stack
    • Context Management
    • Model Selection Guide
  • 提高提示技巧
    • 提示工程指南
    • Cline-胜算云增强版 内存库
  • Improving Your Prompting Skills
    • Prompt Engineering Guide
    • Cline Memory Bank
  • 探索 Cline 的工具
    • Cline-胜算云增强版 工具指南
  • 检查站
  • 计划与行动模式:有效人工智能发展指南
  • 新建任务工具
  • Remote Browser 支持
  • Exploring Cline's Tools
    • Cline Tools Guide
    • Checkpoints
    • Plan & Act Modes: A Guide to Effective AI Development
    • New Task Tool
  • Remote Browser Support
  • 企业解决方案
    • 安全问题
  • 云提供商集成
  • MCP 服务器
  • 自定义说明
  • Security Concerns
    • Security Concerns
  • Cloud Provider Integration
  • MCP Servers
  • Custom Instructions
  • MCP服务器
    • MCP概述
    • MCP市场
  • 从 GitHub 添加 MCP 服务器
  • 配置 MCP 服务器
  • 连接到远程服务器
  • MCP 传输机制
  • MCP 服务器开发协议
  • MCP Servers
    • MCP Overview
  • MCP Marketplace
  • Adding MCP Servers from GitHub
  • Configuring MCP Servers
  • Connecting to a Remote Server
  • MCP Transport Mechanisms
  • MCP Server Development Protocol
  • 自定义模型配置
    • 带有凭证身份验证的 AWS Bedrock
    • 带配置文件身份验证的 AWS Bedrock
    • GCP Vertex AI
  • LiteLLM 和 Cline-胜算云增强版(使用 Codestral)
  • Custom Model Configs
    • AWS Bedrock w/ Credentials Authentication
  • AWS Bedrock w/ Profile Authentication
  • GCP Vertex AI
  • LiteLLM & Cline (using Codestral)
  • 本地运行模型
    • 请先阅读
    • Ollama
    • LM 工作室
  • Ollama
  • LM Studio
  • Running Models Locally
  • More Info
    • Telemetry
    • 遥测
Powered by GitBook
On this page

MCP Server Development Protocol

PreviousMCP Transport MechanismsNext带有凭证身份验证的 AWS Bedrock

Last updated 2 months ago

This protocol is designed to streamline the development process of building MCP servers with Cline.

🚀 Build and share your MCP servers with the world. Once you've created a great MCP server, submit it to the to make it discoverable and one-click installable by thousands of developers.

What Are MCP Servers?

Model Context Protocol (MCP) servers extend AI assistants like Cline by giving them the ability to:

  • Access external APIs and services

  • Retrieve real-time data

  • Control applications and local systems

  • Perform actions beyond what text prompts alone can achieve

Without MCP, AI assistants are powerful but isolated. With MCP, they gain the ability to interact with virtually any digital system.

The Development Protocol

The heart of effective MCP server development is following a structured protocol. This protocol is implemented through a .clinerules file that lives at the root of your MCP working directory (/Users/your-name/Documents/Cline/MCP).

Using .clinerules Files

A .clinerules file is a special configuration that Cline reads automatically when working in the directory where it's placed. These files:

  • Configure Cline's behavior and enforce best practices

  • Switch Cline into a specialized MCP development mode

  • Provide a step-by-step protocol for building servers

  • Implement safety measures like preventing premature completion

  • Guide you through planning, implementation, and testing phases

Here's the complete MCP Server Development Protocol that should be placed in your .clinerules file:

Copy

# MCP Server Development Protocol

⚠️ CRITICAL: DO NOT USE attempt_completion BEFORE TESTING ⚠️

## Step 1: Planning (PLAN MODE)
- What problem does this tool solve?
- What API/service will it use?
- What are the authentication requirements?
  □ Standard API key
  □ OAuth (requires separate setup script)
  □ Other credentials

## Step 2: Implementation (ACT MODE)
1. Bootstrap
   - For web services, JavaScript integration, or Node.js environments:
     ```bash
     npx @modelcontextprotocol/create-server my-server
     cd my-server
     npm install
     ```
   - For data science, ML workflows, or Python environments:
     ```bash
     pip install mcp
     # Or with uv (recommended)
     uv add "mcp[cli]"
     ```

2. Core Implementation
   - Use MCP SDK
   - Implement comprehensive logging
     - TypeScript (for web/JS projects):
       ```typescript
       console.error('[Setup] Initializing server...');
       console.error('[API] Request to endpoint:', endpoint);
       console.error('[Error] Failed with:', error);
       ```
     - Python (for data science/ML projects):
       ```python
       import logging
       logging.error('[Setup] Initializing server...')
       logging.error(f'[API] Request to endpoint: {endpoint}')
       logging.error(f'[Error] Failed with: {str(error)}')
       ```
   - Add type definitions
   - Handle errors with context
   - Implement rate limiting if needed

3. Configuration
   - Get credentials from user if needed
   - Add to MCP settings:
     - For TypeScript projects:
       ```json
       {
         "mcpServers": {
           "my-server": {
             "command": "node",
             "args": ["path/to/build/index.js"],
             "env": {
               "API_KEY": "key"
             },
             "disabled": false,
             "autoApprove": []
           }
         }
       }
       ```
     - For Python projects:
       ```bash
       # Directly with command line
       mcp install server.py -v API_KEY=key
       
       # Or in settings.json
       {
         "mcpServers": {
           "my-server": {
             "command": "python",
             "args": ["server.py"],
             "env": {
               "API_KEY": "key"
             },
             "disabled": false,
             "autoApprove": []
           }
         }
       }
       ```

## Step 3: Testing (BLOCKER ⛔️)

<thinking>
BEFORE using attempt_completion, I MUST verify:
□ Have I tested EVERY tool?
□ Have I confirmed success from the user for each test?
□ Have I documented the test results?

If ANY answer is "no", I MUST NOT use attempt_completion.
</thinking>

1. Test Each Tool (REQUIRED)
   □ Test each tool with valid inputs
   □ Verify output format is correct
   ⚠️ DO NOT PROCEED UNTIL ALL TOOLS TESTED

## Step 4: Completion
❗ STOP AND VERIFY:
□ Every tool has been tested with valid inputs
□ Output format is correct for each tool

Only after ALL tools have been tested can attempt_completion be used.

## Key Requirements
- ✓ Must use MCP SDK
- ✓ Must have comprehensive logging
- ✓ Must test each tool individually
- ✓ Must handle errors gracefully
- ⛔️ NEVER skip testing before completion

When this .clinerules file is present in your working directory, Cline will:

  1. Start in PLAN MODE to design your server before implementation

  2. Enforce proper implementation patterns in ACT MODE

  3. Require testing of all tools before allowing completion

  4. Guide you through the entire development lifecycle

Getting Started

Creating an MCP server requires just a few simple steps to get started:

1. Create a .clinerules file (🚨 IMPORTANT)

First, add a .clinerules file to the root of your MCP working directory using the protocol above. This file configures Cline to use the MCP development protocol when working in this folder.

2. Start a Chat with a Clear Description

Begin your Cline chat by clearly describing what you want to build. Be specific about:

  • The purpose of your MCP server

  • Which API or service you want to integrate with

  • Any specific tools or features you need

For example:

Copy

I want to build an MCP server for the AlphaAdvantage financial API.
It should allow me to get real-time stock data, perform technical 
analysis, and retrieve company financial information.

3. Work Through the Protocol

Cline will automatically start in PLAN MODE, guiding you through the planning process:

  • Discussing the problem scope

  • Reviewing API documentation

  • Planning authentication methods

  • Designing tool interfaces

When ready, switch to ACT MODE using the toggle at the bottom of the chat to begin implementation.

4. Provide API Documentation Early

One of the most effective ways to help Cline build your MCP server is to share official API documentation right at the start:

Copy

Here's the API documentation for the service:
[Paste API documentation here]

Providing comprehensive API details (endpoints, authentication, data structures) significantly improves Cline's ability to implement an effective MCP server.

Understanding the Two Modes

PLAN MODE

In this collaborative phase, you work with Cline to design your MCP server:

  • Define the problem scope

  • Choose appropriate APIs

  • Plan authentication methods

  • Design the tool interfaces

  • Determine data formats

ACT MODE

Once planning is complete, Cline helps implement the server:

  • Set up the project structure

  • Write the implementation code

  • Configure settings

  • Test each component thoroughly

  • Finalize documentation

Case Study: AlphaAdvantage Stock Analysis Server

Let's walk through the development process of our AlphaAdvantage MCP server, which provides stock data analysis and reporting capabilities.

Planning Phase

During the planning phase, we:

  1. Defined the problem: Users need access to financial data, stock analysis, and market insights directly through their AI assistant

  2. Selected the API: AlphaAdvantage API for financial market data

    • Standard API key authentication

    • Rate limits of 5 requests per minute (free tier)

    • Various endpoints for different financial data types

  3. Designed the tools needed:

    • Stock overview information (current price, company details)

    • Technical analysis with indicators (RSI, MACD, etc.)

    • Fundamental analysis (financial statements, ratios)

    • Earnings report data

    • News and sentiment analysis

  4. Planned data formatting:

    • Clean, well-formatted markdown output

    • Tables for structured data

    • Visual indicators (↑/↓) for trends

    • Proper formatting of financial numbers

Implementation

We began by bootstrapping the project:

Copy

npx @modelcontextprotocol/create-server alphaadvantage-mcp
cd alphaadvantage-mcp
npm install axios node-cache

Next, we structured our project with:

Copy

src/
  ├── api/
  │   └── alphaAdvantageClient.ts  # API client with rate limiting & caching
  ├── formatters/
  │   └── markdownFormatter.ts     # Output formatters for clean markdown
  └── index.ts                     # Main MCP server implementation

API Client Implementation

The API client implementation included:

  • Rate limiting: Enforcing the 5 requests per minute limit

  • Caching: Reducing API calls with strategic caching

  • Error handling: Robust error detection and reporting

  • Typed interfaces: Clear TypeScript types for all data

Key implementation details:

Copy

/**
 * Manage rate limiting based on free tier (5 calls per minute)
 */
private async enforceRateLimit() {
  if (this.requestsThisMinute >= 5) {
    console.error("[Rate Limit] Rate limit reached. Waiting for next minute...");
    return new Promise<void>((resolve) => {
      const remainingMs = 60 * 1000 - (Date.now() % (60 * 1000));
      setTimeout(resolve, remainingMs + 100); // Add 100ms buffer
    });
  }
  
  this.requestsThisMinute++;
  return Promise.resolve();
}

Markdown Formatting

We implemented formatters to display financial data beautifully:

Copy

/**
 * Format company overview into markdown
 */
export function formatStockOverview(overviewData: any, quoteData: any): string {
  // Extract data
  const overview = overviewData;
  const quote = quoteData["Global Quote"];
  
  // Calculate price change
  const currentPrice = parseFloat(quote["05. price"] || "0");
  const priceChange = parseFloat(quote["09. change"] || "0");
  const changePercent = parseFloat(quote["10. change percent"]?.replace("%", "") || "0");
  
  // Format markdown
  let markdown = `# ${overview.Symbol} (${overview.Name}) - ${formatCurrency(currentPrice)} ${addTrendIndicator(priceChange)}${changePercent > 0 ? '+' : ''}${changePercent.toFixed(2)}%\n\n`;
  
  // Add more details...
  
  return markdown;
}

Tool Implementation

We defined five tools with clear interfaces:

Copy

server.setRequestHandler(ListToolsRequestSchema, async () => {
  console.error("[Setup] Listing available tools");
  
  return {
    tools: [
      {
        name: "get_stock_overview",
        description: "Get basic company info and current quote for a stock symbol",
        inputSchema: {
          type: "object",
          properties: {
            symbol: {
              type: "string",
              description: "Stock symbol (e.g., 'AAPL')"
            },
            market: {
              type: "string",
              description: "Optional market (e.g., 'US')",
              default: "US"
            }
          },
          required: ["symbol"]
        }
      },
      // Additional tools defined here...
    ]
  };
});

Each tool's handler included:

  • Input validation

  • API client calls with error handling

  • Markdown formatting of responses

  • Comprehensive logging

Testing Phase

This critical phase involved systematically testing each tool:

  1. First, we configured the MCP server in the settings:

Copy

{
  "mcpServers": {
    "alphaadvantage-mcp": {
      "command": "node",
      "args": [
        "/path/to/alphaadvantage-mcp/build/index.js"
      ],
      "env": {
        "ALPHAVANTAGE_API_KEY": "YOUR_API_KEY"
      },
      "disabled": false,
      "autoApprove": []
    }
  }
}
  1. Then we tested each tool individually:

  • get_stock_overview: Retrieved AAPL stock overview information

    Copy

    # AAPL (Apple Inc) - $241.84 ↑+1.91%
    
    **Sector:** TECHNOLOGY
    **Industry:** ELECTRONIC COMPUTERS
    **Market Cap:** 3.63T
    **P/E Ratio:** 38.26
    ...
  • get_technical_analysis: Obtained price action and RSI data

    Copy

    # Technical Analysis: AAPL
    
    ## Daily Price Action
    
    Current Price: $241.84 (↑$4.54, +1.91%)
    
    ### Recent Daily Prices
    
    | Date | Open | High | Low | Close | Volume |
    |------|------|------|-----|-------|--------|
    | 2025-02-28 | $236.95 | $242.09 | $230.20 | $241.84 | 56.83M |
    ...
  • get_earnings_report: Retrieved MSFT earnings history and formatted report

    Copy

    # Earnings Report: MSFT (Microsoft Corporation)
    
    **Sector:** TECHNOLOGY
    **Industry:** SERVICES-PREPACKAGED SOFTWARE
    **Current EPS:** $12.43
    
    ## Recent Quarterly Earnings
    
    | Quarter | Date | EPS Estimate | EPS Actual | Surprise % |
    |---------|------|-------------|------------|------------|
    | 2024-12-31 | 2025-01-29 | $3.11 | $3.23 | ↑4.01% |
    ...

Challenges and Solutions

During development, we encountered several challenges:

  1. API Rate Limiting:

    • Challenge: Free tier limited to 5 calls per minute

    • Solution: Implemented queuing, enforced rate limits, and added comprehensive caching

  2. Data Formatting:

    • Challenge: Raw API data not user-friendly

    • Solution: Created formatting utilities for consistent display of financial data

  3. Timeout Issues:

    • Challenge: Complex tools making multiple API calls could timeout

    • Solution: Suggested breaking complex tools into smaller pieces, optimizing caching

Lessons Learned

Our AlphaAdvantage implementation taught us several key lessons:

  1. Plan for API Limits: Understand and design around API rate limits from the beginning

  2. Cache Strategically: Identify high-value caching opportunities to improve performance

  3. Format for Readability: Invest in good data formatting for improved user experience

  4. Test Every Path: Test all tools individually before completion

  5. Handle API Complexity: For APIs requiring multiple calls, design tools with simpler scopes

Core Implementation Best Practices

Comprehensive Logging

Effective logging is essential for debugging MCP servers:

Copy

// Start-up logging
console.error('[Setup] Initializing AlphaAdvantage MCP server...');

// API request logging 
console.error(`[API] Getting stock overview for ${symbol}`);

// Error handling with context
console.error(`[Error] Tool execution failed: ${error.message}`);

// Cache operations
console.error(`[Cache] Using cached data for: ${cacheKey}`);

Strong Typing

Type definitions prevent errors and improve maintainability:

Copy

export interface AlphaAdvantageConfig {
  apiKey: string;
  cacheTTL?: Partial<typeof DEFAULT_CACHE_TTL>;
  baseURL?: string;
}

/**
 * Validate that a stock symbol is provided and looks valid
 */
function validateSymbol(symbol: unknown): asserts symbol is string {
  if (typeof symbol !== "string" || symbol.trim() === "") {
    throw new McpError(ErrorCode.InvalidParams, "A valid stock symbol is required");
  }
  
  // Basic symbol validation (letters, numbers, dots)
  const symbolRegex = /^[A-Za-z0-9.]+$/;
  if (!symbolRegex.test(symbol)) {
    throw new McpError(ErrorCode.InvalidParams, `Invalid stock symbol: ${symbol}`);
  }
}

Intelligent Caching

Reduce API calls and improve performance:

Copy

// Default cache TTL in seconds
const DEFAULT_CACHE_TTL = {
  STOCK_OVERVIEW: 60 * 60, // 1 hour
  TECHNICAL_ANALYSIS: 60 * 30, // 30 minutes
  FUNDAMENTAL_ANALYSIS: 60 * 60 * 24, // 24 hours
  EARNINGS_REPORT: 60 * 60 * 24, // 24 hours
  NEWS: 60 * 15, // 15 minutes
};

// Check cache first
const cachedData = this.cache.get<T>(cacheKey);
if (cachedData) {
  console.error(`[Cache] Using cached data for: ${cacheKey}`);
  return cachedData;
}

// Cache successful responses
this.cache.set(cacheKey, response.data, cacheTTL);

Graceful Error Handling

Implement robust error handling that maintains a good user experience:

Copy

try {
  switch (request.params.name) {
    case "get_stock_overview": {
      // Implementation...
    }
    
    // Other cases...
    
    default:
      throw new McpError(ErrorCode.MethodNotFound, `Unknown tool: ${request.params.name}`);
  }
} catch (error) {
  console.error(`[Error] Tool execution failed: ${error instanceof Error ? error.message : String(error)}`);
  
  if (error instanceof McpError) {
    throw error;
  }
  
  return {
    content: [{
      type: "text",
      text: `Error: ${error instanceof Error ? error.message : String(error)}`
    }],
    isError: true
  };
}

MCP Resources

Resources let your MCP servers expose data to Cline without executing code. They're perfect for providing context like files, API responses, or database records that Cline can reference during conversations.

Adding Resources to Your MCP Server

  1. Define the resources your server will expose:

Copy

server.setRequestHandler(ListResourcesRequestSchema, async () => {
  return {
    resources: [
      {
        uri: "file:///project/readme.md",
        name: "Project README",
        mimeType: "text/markdown"
      }
    ]
  };
});
  1. Implement read handlers to deliver the content:

Copy

server.setRequestHandler(ReadResourceRequestSchema, async (request) => {
  if (request.params.uri === "file:///project/readme.md") {
    const content = await fs.promises.readFile("/path/to/readme.md", "utf-8");
    return {
      contents: [{
        uri: request.params.uri,
        mimeType: "text/markdown",
        text: content
      }]
    };
  }
  
  throw new Error("Resource not found");
});

Common Challenges and Solutions

API Authentication Complexities

Challenge: APIs often have different authentication methods.

Solution:

  • For API keys, use environment variables in the MCP configuration

  • For OAuth, create a separate script to obtain refresh tokens

  • Store sensitive tokens securely

Copy

// Authenticate using API key from environment
const API_KEY = process.env.ALPHAVANTAGE_API_KEY;
if (!API_KEY) {
  console.error("[Error] Missing ALPHAVANTAGE_API_KEY environment variable");
  process.exit(1);
}

// Initialize API client
const apiClient = new AlphaAdvantageClient({
  apiKey: API_KEY
});

Missing or Limited API Features

Challenge: APIs may not provide all the functionality you need.

Solution:

  • Implement fallbacks using available endpoints

  • Create simulated functionality where necessary

  • Transform API data to match your needs

API Rate Limiting

Challenge: Most APIs have rate limits that can cause failures.

Solution:

  • Implement proper rate limiting

  • Add intelligent caching

  • Provide graceful degradation

  • Add transparent errors about rate limits

Copy

if (this.requestsThisMinute >= 5) {
  console.error("[Rate Limit] Rate limit reached. Waiting for next minute...");
  return new Promise<void>((resolve) => {
    const remainingMs = 60 * 1000 - (Date.now() % (60 * 1000));
    setTimeout(resolve, remainingMs + 100); // Add 100ms buffer
  });
}

Additional Resources

Resources make your MCP servers more context-aware, allowing Cline to access specific information without requiring you to copy/paste. For more information, refer to the .

Cline MCP Marketplace
official documentation
MCP Protocol Documentation
MCP SDK Documentation
MCP Server Examples
PreviousMCP Transport Mechanisms