Cline - 中文版 Docs
  • Cline Documentation
  • 入门指南
    • 快速开始
    • What is Cline?
  • Basics
    • Cline - 中文版胜算 说明文档
      • Cline 和模型上下文协议 (MCP) 服务器:提升 AI 能力
      • Interactive blocks
        • OpenAPI
      • Integrations
        • Cloud Provider Integration
        • Security Concerns
      • .clineignore 功能支持
  • Cline - 中文版胜算 说明文档
    • 什么是Cline - 胜算云增强版
    • 对于新程序员
    • 安装 Cline-胜算云增强版
    • 安装 Dev Essentials
    • 我们最喜欢的技术栈
    • 上下文管理
    • 型号选择指南
  • Getting Started
    • What is Cline?
    • For New Coders
    • Installing Cline
    • Installing Dev Essentials
    • Our Favorite Tech Stack
    • Context Management
    • Model Selection Guide
  • 提高提示技巧
    • 提示工程指南
    • Cline-胜算云增强版 内存库
  • Improving Your Prompting Skills
    • Prompt Engineering Guide
    • Cline Memory Bank
  • 探索 Cline 的工具
    • Cline-胜算云增强版 工具指南
  • 检查站
  • 计划与行动模式:有效人工智能发展指南
  • 新建任务工具
  • Remote Browser 支持
  • Exploring Cline's Tools
    • Cline Tools Guide
    • Checkpoints
    • Plan & Act Modes: A Guide to Effective AI Development
    • New Task Tool
  • Remote Browser Support
  • 企业解决方案
    • 安全问题
  • 云提供商集成
  • MCP 服务器
  • 自定义说明
  • Security Concerns
    • Security Concerns
  • Cloud Provider Integration
  • MCP Servers
  • Custom Instructions
  • MCP服务器
    • MCP概述
    • MCP市场
  • 从 GitHub 添加 MCP 服务器
  • 配置 MCP 服务器
  • 连接到远程服务器
  • MCP 传输机制
  • MCP 服务器开发协议
  • MCP Servers
    • MCP Overview
  • MCP Marketplace
  • Adding MCP Servers from GitHub
  • Configuring MCP Servers
  • Connecting to a Remote Server
  • MCP Transport Mechanisms
  • MCP Server Development Protocol
  • 自定义模型配置
    • 带有凭证身份验证的 AWS Bedrock
    • 带配置文件身份验证的 AWS Bedrock
    • GCP Vertex AI
  • LiteLLM 和 Cline-胜算云增强版(使用 Codestral)
  • Custom Model Configs
    • AWS Bedrock w/ Credentials Authentication
  • AWS Bedrock w/ Profile Authentication
  • GCP Vertex AI
  • LiteLLM & Cline (using Codestral)
  • 本地运行模型
    • 请先阅读
    • Ollama
    • LM 工作室
  • Ollama
  • LM Studio
  • Running Models Locally
  • More Info
    • Telemetry
    • 遥测
Powered by GitBook
On this page
  1. More Info

Telemetry

PreviousLM StudioNext遥测

Last updated 2 months ago

Overview

To help make Cline better for everyone, we collect anonymous usage data that helps us understand how developers are using our open-source AI coding agent. This feedback loop is crucial for improving Cline's capabilities and user experience.

We use PostHog, an open-source analytics platform, for data collection and analysis. Our telemetry implementation is fully transparent - you can review the to see exactly what we track.

Tracking Policy

Privacy is our priority. All collected data is anonymized before being sent to PostHog, with no personally identifiable information (PII) included. Your code, prompts, and conversation content always remain private and are never collected.

What We Track

We collect basic anonymous usage data including:

Task Interactions: When tasks start and finish, conversation flow (without content) Mode and Tool Usage: Switches between plan/act modes, which tools are being used Token Usage: Basic metrics about conversation length to estimate cost (not the actual content of the tokens) System Context: OS type and VS Code environment details UI Activity: Navigation patterns and feature usage

For complete transparency, you can inspect our to see the exact events we track.

How to Opt Out

Telemetry in Cline is entirely optional and requires your explicit consent:

  • When you update or install our VS Code extension, you'll see a simple prompt: "Help Improve Cline" with Allow or Deny options

  • You can change your preference anytime in settings

Cline also respects VS Code's global telemetry settings. If you've disabled telemetry at the VS Code level, Cline's telemetry will automatically be disabled as well.

source code
telemetry implementation