Cline - 中文版 Docs
  • Cline Documentation
  • 入门指南
    • 快速开始
    • What is Cline?
  • Basics
    • Cline - 中文版胜算 说明文档
      • Cline 和模型上下文协议 (MCP) 服务器:提升 AI 能力
      • Interactive blocks
        • OpenAPI
      • Integrations
        • Cloud Provider Integration
        • Security Concerns
      • .clineignore 功能支持
  • Cline - 中文版胜算 说明文档
    • 什么是Cline - 胜算云增强版
    • 对于新程序员
    • 安装 Cline-胜算云增强版
    • 安装 Dev Essentials
    • 我们最喜欢的技术栈
    • 上下文管理
    • 型号选择指南
  • Getting Started
    • What is Cline?
    • For New Coders
    • Installing Cline
    • Installing Dev Essentials
    • Our Favorite Tech Stack
    • Context Management
    • Model Selection Guide
  • 提高提示技巧
    • 提示工程指南
    • Cline-胜算云增强版 内存库
  • Improving Your Prompting Skills
    • Prompt Engineering Guide
    • Cline Memory Bank
  • 探索 Cline 的工具
    • Cline-胜算云增强版 工具指南
  • 检查站
  • 计划与行动模式:有效人工智能发展指南
  • 新建任务工具
  • Remote Browser 支持
  • Exploring Cline's Tools
    • Cline Tools Guide
    • Checkpoints
    • Plan & Act Modes: A Guide to Effective AI Development
    • New Task Tool
  • Remote Browser Support
  • 企业解决方案
    • 安全问题
  • 云提供商集成
  • MCP 服务器
  • 自定义说明
  • Security Concerns
    • Security Concerns
  • Cloud Provider Integration
  • MCP Servers
  • Custom Instructions
  • MCP服务器
    • MCP概述
    • MCP市场
  • 从 GitHub 添加 MCP 服务器
  • 配置 MCP 服务器
  • 连接到远程服务器
  • MCP 传输机制
  • MCP 服务器开发协议
  • MCP Servers
    • MCP Overview
  • MCP Marketplace
  • Adding MCP Servers from GitHub
  • Configuring MCP Servers
  • Connecting to a Remote Server
  • MCP Transport Mechanisms
  • MCP Server Development Protocol
  • 自定义模型配置
    • 带有凭证身份验证的 AWS Bedrock
    • 带配置文件身份验证的 AWS Bedrock
    • GCP Vertex AI
  • LiteLLM 和 Cline-胜算云增强版(使用 Codestral)
  • Custom Model Configs
    • AWS Bedrock w/ Credentials Authentication
  • AWS Bedrock w/ Profile Authentication
  • GCP Vertex AI
  • LiteLLM & Cline (using Codestral)
  • 本地运行模型
    • 请先阅读
    • Ollama
    • LM 工作室
  • Ollama
  • LM Studio
  • Running Models Locally
  • More Info
    • Telemetry
    • 遥测
Powered by GitBook
On this page

LiteLLM & Cline (using Codestral)

PreviousGCP Vertex AINext请先阅读

Last updated 2 months ago

Using LiteLLM with Cline

This guide demonstrates how to run a demo for LiteLLM starting with the Codestral model for use with Cline.

Prerequisites

  • installed to run the LiteLLM image locally

  • For this example config: A Codestral API Key (different from the Mistral API Keys)

Setup

  1. Create a .env file and fill in the appropriate field

Copy

# Tip: Use the following command to generate a random alphanumeric key:
# openssl rand -base64 32 | tr -dc 'A-Za-z0-9' | head -c 32
LITELLM_MASTER_KEY=YOUR_LITELLM_MASTER_KEY
CODESTRAL_API_KEY=YOUR_CODESTRAL_API_KEY

Note: Although this is limited to localhost, it's a good practice set LITELLM_MASTER_KEY to something secure

  1. Configuration

We'll need to create a config.yaml file to contain our LiteLLM configuration. In this case we'll just have one model, 'codestral-latest' and label it 'codestral'

Copy

model_list:
  - model_name: codestral
    litellm_params:
      model: codestral/codestral-latest
      api_key: os.environ/CODESTRAL_API_KEY

Running the Demo

  1. Startup the LiteLLM docker container

Copy

docker run \
    --env-file .env \
    -v $(pwd)/config.yaml:/app/config.yaml \
    -p 127.0.0.1:4000:4000 \
    ghcr.io/berriai/litellm:main-latest \
    --config /app/config.yaml --detailed_debug
  1. Setup Cline

    Once the LiteLLM server is up and running you can set it up in Cline:

    • Base URL should be http://0.0.0.0:4000/v1

    • API Key should be the one you set in .env for LITELLM_MASTER_KEY

    • Model ID is codestral or whatever you named it under config.yaml

Getting Help

Author: mdp

Docker CLI or Docker Desktop
LiteLLM Documentation
Mistral AI Console
Cline Discord Community