Cline - 中文版 Docs
  • Cline Documentation
  • 入门指南
    • 快速开始
    • What is Cline?
  • Basics
    • Cline - 中文版胜算 说明文档
      • Cline 和模型上下文协议 (MCP) 服务器:提升 AI 能力
      • Interactive blocks
        • OpenAPI
      • Integrations
        • Cloud Provider Integration
        • Security Concerns
      • .clineignore 功能支持
  • Cline - 中文版胜算 说明文档
    • 什么是Cline - 胜算云增强版
    • 对于新程序员
    • 安装 Cline-胜算云增强版
    • 安装 Dev Essentials
    • 我们最喜欢的技术栈
    • 上下文管理
    • 型号选择指南
  • Getting Started
    • What is Cline?
    • For New Coders
    • Installing Cline
    • Installing Dev Essentials
    • Our Favorite Tech Stack
    • Context Management
    • Model Selection Guide
  • 提高提示技巧
    • 提示工程指南
    • Cline-胜算云增强版 内存库
  • Improving Your Prompting Skills
    • Prompt Engineering Guide
    • Cline Memory Bank
  • 探索 Cline 的工具
    • Cline-胜算云增强版 工具指南
  • 检查站
  • 计划与行动模式:有效人工智能发展指南
  • 新建任务工具
  • Remote Browser 支持
  • Exploring Cline's Tools
    • Cline Tools Guide
    • Checkpoints
    • Plan & Act Modes: A Guide to Effective AI Development
    • New Task Tool
  • Remote Browser Support
  • 企业解决方案
    • 安全问题
  • 云提供商集成
  • MCP 服务器
  • 自定义说明
  • Security Concerns
    • Security Concerns
  • Cloud Provider Integration
  • MCP Servers
  • Custom Instructions
  • MCP服务器
    • MCP概述
    • MCP市场
  • 从 GitHub 添加 MCP 服务器
  • 配置 MCP 服务器
  • 连接到远程服务器
  • MCP 传输机制
  • MCP 服务器开发协议
  • MCP Servers
    • MCP Overview
  • MCP Marketplace
  • Adding MCP Servers from GitHub
  • Configuring MCP Servers
  • Connecting to a Remote Server
  • MCP Transport Mechanisms
  • MCP Server Development Protocol
  • 自定义模型配置
    • 带有凭证身份验证的 AWS Bedrock
    • 带配置文件身份验证的 AWS Bedrock
    • GCP Vertex AI
  • LiteLLM 和 Cline-胜算云增强版(使用 Codestral)
  • Custom Model Configs
    • AWS Bedrock w/ Credentials Authentication
  • AWS Bedrock w/ Profile Authentication
  • GCP Vertex AI
  • LiteLLM & Cline (using Codestral)
  • 本地运行模型
    • 请先阅读
    • Ollama
    • LM 工作室
  • Ollama
  • LM Studio
  • Running Models Locally
  • More Info
    • Telemetry
    • 遥测
Powered by GitBook
On this page

MCP Servers

PreviousCloud Provider IntegrationNextCustom Instructions

Last updated 2 months ago

Model Context Protocol (MCP) servers expand Cline's capabilities by providing standardized access to external data sources and executable functions. By implementing MCP servers, LLM tools can dynamically retrieve and incorporate relevant information from both local and remote data sources. This capability ensures that the models operate with the most current and contextually appropriate data, improving the accuracy and relevance of their outputs.


Secure Architecture Fundamentals

MCP servers follow a client-server architecture where hosts (LLM applications like Cline) initiate connections through a transport layer to MCP servers. This architecture inherently provides security benefits as it maintains clear separation between components. Enterprise deployments should focus on the proper implementation of this architecture to ensure secure operations, particularly regarding the message exchange patterns and connection lifecycle management. For MCP architecture details, see , and for latest specifications, see .

Transport Layer Security

For enterprise environments, selecting the appropriate transport mechanism is crucial. While stdio transport works efficiently for local processes, HTTP with Server-Sent Events (SSE) transport requires additional security measures. TLS should be used for all remote connections whenever possible. This is especially important when MCP servers are deployed across different network segments within corporate infrastructure.

Message Validation and Access Control

The MCP architecture defines standard error codes and message types (Requests, Results, Errors, and Notifications), providing a structured framework for secure communication. Security teams should consider message validation, sanitizing inputs, checking message size limits, and verifying JSON-RPC format. Additionally, implementing resource protection through access controls, path validation, and request rate limiting helps prevent potential abuse of MCP server capabilities.

Monitoring and Compliance

For enterprise compliance requirements, implementing comprehensive logging of protocol events, message flows, and errors is essential. The MCP architecture supports diagnostic capabilities including health checks, connection state monitoring, and resource usage tracking. Organizations should extend these capabilities to meet their specific compliance needs, particularly for audit trails of all MCP server interactions and resource access patterns.

By leveraging the client-server design of the MCP architecture and implementing appropriate security controls at each layer, enterprises can safely integrate MCP servers into their environments while maintaining their security posture and meeting regulatory requirements.

MCP Architecture
MCP Specifications