Cline - 中文版 Docs
  • Cline Documentation
  • 入门指南
    • 快速开始
    • What is Cline?
  • Basics
    • Cline - 中文版胜算 说明文档
      • Cline 和模型上下文协议 (MCP) 服务器:提升 AI 能力
      • Interactive blocks
        • OpenAPI
      • Integrations
        • Cloud Provider Integration
        • Security Concerns
      • .clineignore 功能支持
  • Cline - 中文版胜算 说明文档
    • 什么是Cline - 胜算云增强版
    • 对于新程序员
    • 安装 Cline-胜算云增强版
    • 安装 Dev Essentials
    • 我们最喜欢的技术栈
    • 上下文管理
    • 型号选择指南
  • Getting Started
    • What is Cline?
    • For New Coders
    • Installing Cline
    • Installing Dev Essentials
    • Our Favorite Tech Stack
    • Context Management
    • Model Selection Guide
  • 提高提示技巧
    • 提示工程指南
    • Cline-胜算云增强版 内存库
  • Improving Your Prompting Skills
    • Prompt Engineering Guide
    • Cline Memory Bank
  • 探索 Cline 的工具
    • Cline-胜算云增强版 工具指南
  • 检查站
  • 计划与行动模式:有效人工智能发展指南
  • 新建任务工具
  • Remote Browser 支持
  • Exploring Cline's Tools
    • Cline Tools Guide
    • Checkpoints
    • Plan & Act Modes: A Guide to Effective AI Development
    • New Task Tool
  • Remote Browser Support
  • 企业解决方案
    • 安全问题
  • 云提供商集成
  • MCP 服务器
  • 自定义说明
  • Security Concerns
    • Security Concerns
  • Cloud Provider Integration
  • MCP Servers
  • Custom Instructions
  • MCP服务器
    • MCP概述
    • MCP市场
  • 从 GitHub 添加 MCP 服务器
  • 配置 MCP 服务器
  • 连接到远程服务器
  • MCP 传输机制
  • MCP 服务器开发协议
  • MCP Servers
    • MCP Overview
  • MCP Marketplace
  • Adding MCP Servers from GitHub
  • Configuring MCP Servers
  • Connecting to a Remote Server
  • MCP Transport Mechanisms
  • MCP Server Development Protocol
  • 自定义模型配置
    • 带有凭证身份验证的 AWS Bedrock
    • 带配置文件身份验证的 AWS Bedrock
    • GCP Vertex AI
  • LiteLLM 和 Cline-胜算云增强版(使用 Codestral)
  • Custom Model Configs
    • AWS Bedrock w/ Credentials Authentication
  • AWS Bedrock w/ Profile Authentication
  • GCP Vertex AI
  • LiteLLM & Cline (using Codestral)
  • 本地运行模型
    • 请先阅读
    • Ollama
    • LM 工作室
  • Ollama
  • LM Studio
  • Running Models Locally
  • More Info
    • Telemetry
    • 遥测
Powered by GitBook
On this page

LM Studio

A quick guide to setting up LM Studio for local AI model execution with Cline.

PreviousOllamaNextTelemetry

Last updated 2 months ago

🤖 Setting Up LM Studio with Cline

Run AI models locally using LM Studio with Cline.

📋 Prerequisites

  • Windows, macOS, or Linux computer with AVX2 support

  • Cline installed in VS Code

🚀 Setup Steps

1. Install LM Studio

  • Visit

  • Download and install for your operating system

2. Launch LM Studio

  • Open the installed application

  • You'll see four tabs on the left: Chat, Developer (where you will start the server), My Models (where your downloaded models are stored), Discover (add new models)

3. Download a Model

  • Browse the "Discover" page

  • Select and download your preferred model

  • Wait for download to complete

4. Start the Server

  • Navigate to the "Developer" tab

  • Toggle the server switch to "Running"

  • Note: The server will run at http://localhost:1234

5. Configure Cline

  1. Open VS Code

  2. Click Cline settings icon

  3. Select "LM Studio" as API provider

  4. Select your model from the available options

⚠️ Important Notes

  • Start LM Studio before using with Cline

  • Keep LM Studio running in background

  • First model download may take several minutes depending on size

  • Models are stored locally after download

🔧 Troubleshooting

  1. If Cline can't connect to LM Studio:

  2. Verify LM Studio server is running (check Developer tab)

  3. Ensure a model is loaded

  4. Check your system meets hardware requirements

lmstudio.ai